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Regulation of the depth and uniformity of the impregnation of catalyst support 
pellets with an active ingredient is of considerable industrial importance. A model 
for the time-dependent. flow of impregnating solution into a dry pellet and interior 
dispersal of impregnant is presented. It consists of plug flow into a single pore with 
either mass transfer across the liquid-solid interface or adsorption kinetics providing 
resistance to the removal of impregnant from solution. Predictions based on the 
model are consistent with laboratory impregnations. Of three independent param- 
eters, the relative capacity for adsorption is both the most important in regulating 
dispersal and the easiest to adjust in practice. 

NOMENCLATURE tL 

Concentration, moles/cm3 
Adsorption capacity per unit area of 
pore wall, moles/cm* 
Initial concentration 
Dispersion coefficient, cm2/sec 
Diffusivity, cm*/sec 
Mass transfer coefficient, cm/see 
Adsorption rate coefficient, cm/set 
Desorption rate coefficient, moles/ 
cm2 set 
Impregnation of pore wall, moles/cm 
Reduced mass transfer coefficient 

U 

V 

VP 

V 

[Eq. WI 4Q 
Reduced adsorption coefficient [Eq. t’ 
WI 
Reduced adsorption coefficient [Eq. 

(WI 
Langmuir equilibrium parameter, 

Time to fill pore completely with 
liquid, set [Eq. (9)] 
Reduced velocity [Eq. (4)] 
Vector velocity, cm/set 
Plug flow velocity, cmjsec 
Rate of impregnant removal, moles/ 
cm3/sec 
Axial position, cm 
Reduced diffusivity [Eq. (3)] 
Reduced axial position [Eq. (3)] 
Surface tension, dyn/cm2 
Solution viscosity, P 
Reduced time [Eq. (3)] 
Reduced concentration [Eq. (3)] 
Pressure drop, dyn/cm3 
Fractional coverage of adsorption 
sites 

dimensionless Many catalysts in common use consist of 
Instantaneous penetration of liquid small metal crystallites dispersed on a high 
in pore, cm surface area support. Typically these 
Pore length, cm dispersions are produced by impregnat- 
Radial position, cm ing a pellet or granule of the porous 
Pore radius, cm support with a liquid in which the 
Time, see catalytic ingredient is dissolved. During the 

*Work Supported by NASA Grant No. NGR- impregnation and subsequent drying pe- 
05-003-478, Ames Research Laboratory, Moffit riod, small crystallites of the catalyst or a 
Field, CA. compound containing the catalyst are de- 
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posited on the internal surface of the sup- 
port material. Calcination and reduction, 
or other appropriate pretreatment tech- 
niques, may be necessary later on to con- 
vert the imprcgnant crystallite into a 
catalytically active form. Any of these 
steps can effect the particle size and final 
surface concentration of the catalytic ma- 
terial. In this paper the impregnation step 
is examined in order to find ways to pre- 
dict and control radial profiles of the con- 
centration of the active catalytic ingredi- 
ent within the pellet. 

The optimum composition profile may 
depend upon any of a variety of service 
conditions. If, for example, the reaction is 
severely mass-transfer limited, then the 
active material, usually a metal, should 
be deposited as close as possible to the 
external surface of the pellet or granule. 
The maximum metal dispersion and resist- 
ance to sintering normally occurs at the 
minimum surface concentration for a given 
metal loading (1, 9). Therefore if mass 
transfer of reactants and products is rapid, 
optimum catalyst performance can be 
achieved by uniform impregnation. 

In some situations it is even advan- 
tageous to produce a subsurface impreg- 
nation in which a band of catalyst-free 
support is established on the exterior of the 
pellet. If the reaction is poisoned by an 
impurity which is strongly adsorbed on the 
catalyst support, then the catalyst-free 
slirface band can immobilize the poison, 
keeping it spatially separated from the 
active catalyst. Such a “chromatographic” 
separation of poison and catalyst can be 
used to extend the catalyst life and perhaps 
to ease the removal of the poison in sub- 
sequent regeneration steps. The subsurface 
impregnation can also be beneficial in 
service which produces catalyst attrition 
and loss of catalyst fines from the reactor 
space. A catalyst with a subsurface im- 
pregnation will attrit only the support and 
retain the active metal. 

From these examples it is evident that 
prediction and control of the radial distri- 
bution of catalyst within a granule of sup- 
port can often be emploved to optimize 
catalyst performance. Though much is 

known empirically about producing de- 
sired composition profiles, the procedures 
used are often proprietary and there 
exists in the open literature little ana- 
lytical or mechanistic information describ- 
ing the important processes occurring dur- 
ing impregnation. 

Maatman (3) has demonstrated that 
when alumina is impregnated with chloro- 
platinic acid, though there is a strong 
tendency toward surface impregnation, uni- 
form impregnation can be obtained by 
adding HCl, HNOj or various inorganic 
nitrates to the impregnating solution. Ap- 
parently the additives compete with the 
chloroplatinic acid for available adsorp- 
tion sites and cause surface saturation at 
much lower platinum levels, allowing the 
metal to penetrate deeper into the interior 
of the pellet. 

Benesi, Curtis and Studer (1) have stud- 
ied pH controlled ion exchange of metal 
cations with H+ from alumina and silica 
supports. By absorbing the impregnating 
solution at sufficiently low pH, few ad- 
sorption sites (vacant basic sites) are 
available and the metal cations penetrate 
to the center of the soIid. The H+ in acidic 
solution which suppresses ion exchange can 
be regarded as an “additive” competing 
with the metal ions for potential adsorption 
sites. 

Weisz (4) has examined in some d&ail 
the diffusional relaxation of concentration 
gradients along the length of catalvst pores 
and equilibration with bulk concentrations 
exterior to the pellet. The time constant 
for this relaxation, however, is generally 
long comoared to impregnation times, so 
that employing this method to produce uni- 
form impregnations would severely increase 
catalyst production times and thev seldom 
will play a role in disturbing the profiles 
produced during impregnations when the 
drying process is carried out shortly after 
impregnation. 

METHODS 

Modeling 

The purpose of this work is to develop 
a t,ra,ctable model for the transport and 
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deposition of mat.erial during the impreg- 
nation of a porous solid. 

The problem is analogous to frontal 
chromatography on a scale small compared 
to the radius of the catalyst pellet. This 
situation is more complex than the simple 
chromatographic problem because the fluid 
flow into a catalyst pore never reaches a 
steady state. The overall pressure drop 
remains essentially constant and thus the 
pressure gradient decreases with time as 
the pore fills with liquid. 

Appropriate modeling must be done in 
three areas: 

1. Physical modeling of the porous solid. 
2. Describing the controlling process for 

impregnant removal at the liquid-solid 
interface. 

3. Hydrodynamic modeling for penetra- 
tion of the liquid into the solid. 

Models of porous solids are numerous, 
but the solution of the unsteady-state mass 
transport in a fluid flowing through tortu- 
ous channels characteristic of the actual 
pellet geometries would be a difficult task. 
Thus the idealized model of a single cylin- 
drical pore will be analyzed in order to 
determine qualitatively the behavior of the 
type of system in question and identify the 
important parameters which will control 
impregnant concentration profiles. The re- 
sults are compared, at least qualitatively, 
with laboratory observations of impregna- 
tion of three-dimensional alumina granules 
produced by ball-milling an alumina 
powder. In the single cylindrical pore solu- 
tion begins to flow at time t = 0 (see Fig. 
1) and penetrates deeply under capillary 
force, while impregnant molecules diffuse 
toward the wall and are removed from so- 
lution by adsorption. The capillary uptake 
is described by a model proposed by Wash- 
burn (6) which envisions the unsteady- 
state flow as a succession of Poiseuille 
steady states. It predicts a penetration rate 
proportional to t+. This model assumes a 
constant pressure drop (due to surface ten- 
sion) in the pore, which applies strictly 
only if the pore were initially evacuated. If 
air in the pore has a channel of easy 
escape, however, then the constant pressure 
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FIG. 1. Single pore model. 

difference is certainly maintained. Since 
most porous pellets exude air during liquid 
uptake, this simplification seems amply 
justified. The rigorous mass balance, for 
sufficiently low concentrations of impreg- 
nating species, is given by 

with side conditions 

c(r, 0, 1) = co c 
azz z5.W) 

,()aC 
ar r-o 

= 0, (la) 

indicating constant impregnant concentra- 
tion at the pore mouth, no transport beyond 
the instantaneous liquid front, and radial 
symmetry. The boundary condition at r = 
R will depend on the particular description 
of the adsorption rate at, the wall. Note 
that at t = 0, the field of the equation 
vanishes (I = 0) and hence the initial con- 
dition is c(r, 0,O) = co. 

Plug Flow Velocity 

Equation (1) would require the time- 
dependent velocity field v (T, z, t) . Unsteady 
laminar flow into an empty tube is appar- 
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ently an unsolved problem. It is quite dif- 
ficult for three reasons: (1) the flow is 
time-dependent, (2) the pressure gradient 
depends on the depth of penetration and 
(3) the radial component clearly ap- 
proaches zero well back of the front of the 
liquid but is significant near the front if 
the usual condition of zero slip at r = R 
is applied. 

Instead of using the real (but unknown) 
v(r, z, t) , one-dimensional plug flow v,(t) 
was assumed. Such a substitution into Eq. 
(1) is valid only if there are no significant 
radial concentration gradients, since the 
existence of such gradients would introduce 
serious errors in the axial convection term 
vp@c/&). On the other hand, if ac/& is 
negligible, the first term on the right of (1) 
is unimportant and the r dependence of 
(1) is completely removed. 

The relative magnitude of &z/h can be 
estimated by calculating the dispersion co- 
efficient D, where D has a value such that 
the solution to 

(2) 

will yield the same value of c(z) as the 
mixing-cup average value of c(r, 2) from 
(1). D is given analytically (6, 7) by D = 
vp2R’/489 for laminar flow in long pipes 
when (h/h) lrZR = 0. Using an average 
velocity (up) = L/tL, L = 1 cm, tL = 1 set, 
R = 1O-4 cm, a> = 1O-5 cm2/sec, there re- 
sults D = 2 X 1O-5 cm?/sec. Thus, the 
characteristic time for axial dispersion 
along a length of pore of the order of the 
pore radius is comparable to radial diffu- 
sion times. Hence, for pores with L/R >> 
1, there is virtually no axial dispersion 
because of the radially dependent velocity 
profile and therefore essentially no radial 
concentration gradients for sufficiently con- 
centrated solutions. The effect of concen- 
tration gradients very near the wall are 
discussed below in connection with removal 
mechanisms. 

Equation (1)) then, can be replaced by 

ac 
,+s,g = D ‘3 + V(c, e), (3) 

where V is some function describing the 

rate of removal of impregnant from the 
system. Defining r = z/L, $ = c/co, T = 
t/t& a = Dt,/Lz and u = vptJL, gives: 

g+ ug = ar2 co a 3 + 5 V(c& e) * (4) 

In practical situations, a! < 1O-4 and 
(tL/cO) V ==: IQ where K + 1, and the first 
term on the right of Eq. (4) is thus negli- 
gible. Finally, the approximate mass bal- 
ance to be solved is 

z+ug= ~V(co#,8), (5) 

$a T) = 1, l)(O, 0) = 1. 

Penetration rate: up = dl/dt 

Washburn (5) has presented an em- 
pirically tested expression for the rate of 
penetration (identical to velocity for an in- 
compressible liquid) into a capillary tube. 
If it is assumed that the time-dependent 
flow of the liquid column is a passage 
through an infinite succession of Poiseuille 
steady states, and the small inertial ef- 
fects are neglected, the radial average 
velocity when the liquid front has reached 
a distance I into the capillary is: 

(v)(t) = dl/& = =, 
8 /a) (6) 

Integrating, 

(7) 

(59 

The time tl required to penetrate a distance 
1 is 

In this work, AP was taken to be y/2R 
where y is the surface tension of water, 72 
dyn/cm2 at 25°C. 

Substituting (S), (9) and u = v&/L 
into (5), 
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Model of Impregnant Removal 
at the Pore Wall 

Simplifying the mass balance so as to 
remove the radial coordinate is mathe- 
matically equivalent to assuming that 
there is no resistance in the liquid to 
radial transport of impregnant. In the ab- 
sence of some kind of resistance to removal 
of impregnant at or near the pore wall, V 
would necessarily be very large compared 
to co/tL. This would result in the uninter- 
esting cases in which the pore mouth would 
adsorb all the impregnant or, if there is a 
saturation limit, the pore wall would be 
saturated (0 = 1) near the mouth with an 
abrupt change to 0 = 0 at some value of I? 
depending on the adsorption capacity of 
the pore wall. This latter case was verified 
by solving the mass balance equations for 
diffusional resistance to radial transport in 
the bulk liquid under real plug flow with 
instantaneous removal at the wall: 

(11) 

ae a, ac -= 
at coil ar r=R, 

~(2, r, t) = 0 for 0 < 1, 
ac 
ar r=R = 0 for 0 = 1, $ = = 0. 

I 0 

Note that the rate of adsorption changes 
from instantaneous to zero when 0 = 1. As 
the reduced diffusivity StL/R2 was in- 
creased to realistic (large) values, the cov- 
erage 13 became a step-function in r, as 
expected (see Appendix for a description of 
the solution method). 

That such a step-function of 6’ vs r 
does not always occur in real systems is 
suggested by the electron microprobe stud- 
ies of Andersen and Chen (8) which show 
gradual impregnant profiles of metal in 
alumina pellets. Thus, in Eq. (5) the re- 
moval function V (C, 0) should include a 
finite resistance for the deposition process. 
Two such resistances often considered were 
investigated : mass transfer resistance in 
the liquid at the phase boundary and the 
adsorption kinetics. Both are consistent 
with the assumption of no radial concen- 

tration gradients in the bulk liquid. When 
the resistance is due to adsorption kinetics, 
the concentration is uniform over the en- 
tire pore radius. In the mass transfer limit- 
ing case, the model consists of uniform 
concentration in the bulk liquid with a con- 
centration gradient confined to a thin layer 
adjacent to the wall providing the driving 
force to mass transfer (film model). 

Impregnant Removal at Pore Wall 

1. Control by mass transfer. A conven- 
tional mass transfer coefficient is used: 

v= + (c - c,), 

where k, has units cm see-‘, 2/R is the 
surface area to volume ratio of the pore 
and c, is the concentration adjacent to the 
wall. cw is assumed to be in equilibrium 
with the adsorbed phase characterized by 
the Langmuir isotherm 

K’Lc~ 
e = 1 + KILc,’ (12) 

The surface fractional coverage 0 is deter- 
mined by 

a (ec,) __ = k,(c - c,). at 
Applying (11) and nondimensionalizing, 

the equations for this case result in: 

(144 

U4b) 
where 

Ii = y, rl = 2, KL = K’Lco. 
0 

Thus three independent variables describe 
the impregnation K, a reduced mass trans- 
fer coefficient; 7, a relative capacity of the 
pore wall for adsorption, and KL, an equi- 
librium adsorption coefficient. 

2. Control by adsorption kinetics. In 
this case, the removal of impregnant at the 
wall is described by a reversible solute- 
solid reaction: 
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\’ = - 2kl 
7 c(1 - e) + % 0, (15a) 

TABLE 1 

LimiGng process: Mass transfer Kinetics 
a oh4 - = kIc(l - e) - kze. 

at 
(15b) K * K, 

Parameters KL ++ h-,/K2 
Equations (10) and (14b) become rl @ v 

w a7 + h2 gc = -K1+(i - e) + K2e, (i6a) Or 

ae K1 -= 
a7 

T +b(l - ,9) - : 8, (16b) 
L = (f:&z)exp(-KI’2) 
coR 

where 
- (& + &)exp(KP - 2KI’). (20) 

K, = ‘$, K2 _ =$‘, 2CS 

0 

For M/& = 0, we have 0 = (K,/K+)/ 
11 + vww) 1 or 0 = KI&/( 1 -t &I/) if 
K, = Ic,/k, so that an exact parallel exists 
between this and the former case. The only 
differences is the functional dependence of 
0 and the reduced reaction rate constant K, 
compared to the reduced mass transfer co- 
efficient K (see Table 1). Of the three 
parameters, 7 is clearly the most easily 
controlled in practice (by controlling c,). 

2a. Irreversible adsorption kinetics. An 
interesting limiting case of the kinetically 
controlled model is one in which KL = co 
and 0 is removed from the equations (i.e., 
there is no saturation limit). Such a model 
may apply if the adsorption process is ac- 
tually crystallite growth or if a saturation 
limit does exist but is never approached 
because co is small. As discussed below, 
this model may apply to ion-exchange 
impregnation. 

Equation (10) becomes 

Equation (17) has an analytical solution 
given by 

9 = exp(KP - 2KW”). (W 

The total impregnation, I, a distance r 
down the pore is given by 

R 
J 

,=l 
I(r) = co - 2 r=l‘* K*k,h, (19) 

RESULTS AND INTERPRETATION 

Equations (15) and (16) were solved 
numerically, using a first-order finite dif- 
ference technique. Values for the fractional 
coverage, 0, were computed for two 
situations: (1) at 7 = 1, i.e., as the pore 
just fills entirely with liquid and (2) at 
7 = co, assuming that all impregnant still 
in solution ultimately adsorbs and/or 
crystallizes without further axial transport. 
The results for 7 = 1 are plotted in Figs. 
2 and 3 as 0 vs I? and are compared in Fig. 
4 with results for 7 = ca. 

Before considering the shapes of the 
plots, it is evident that the mass transfer 
and kinetic models give very nearly the 
same results, suggesting that within the 
framework of the entire model, it is un- 
important how the removal at the wall is 
described. Henceforth, the independent 
parameters are referred to as K, KL and 
7 without regard to a particular description 
of the removal process. The parameters 
represent, respectively, an intrinsic rate of 
removal from the liquid, a measure of ad- 
sorption equilibrium and relative capacity 
for adsorption. 

Figure 3 shows the results for a large 
value of K (low resistance to removal), 
K = 10. The curves are sigmoid generally, 
with the location of the ‘(break” determined 
by 7. The larger the capacity for adsorp- 
tion, the nearer to the pore mouth the 
break occurs. K, determines the steepness 
of the sigmoidal curve. The impregnant is 
more dispersed as the adsorption becomes 
more reversible. However, for low values 
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Fro. 2. Fractional coverage of pore wall vs axial position for a slowly adsorbing impregnant (R = 1) at 
T = 1. (-) Kinetic control; (- -) mass transfer control. 

of v (nearly completely saturated pore) 
this effect of KL on the breakthrough 
disappears. 

The curves in Fig. 2 are for K = 1 (high 
resistance to removal). For high values of 
v, 6’ falls smoothly down the pore because 
the impregnant is dispersed axially before 
it is removed from solution. I&, becomes 
an unimportant parameter. For small 7, the 
curves again become sigmoidal with a well- 
defined breakthrough. 

The effects of the three parameters are 

strongly interconnected, evidently, over 
certain ranges. The conclusions which can 
be reasonably drawn from Figs. 2 and 3 
are : 

1. For sufficiently large 7, the removal 
parameter K controls dispersion of impreg- 
nant. Low values of K give a smoothly de- 
creasing concentration down the pore; high 
values given a sigmoidal profile. 

2. For large K and 7, the equilibrium 
parameter KL, a ffects the slope of the pro- 

1.0 1.0 
I I I I I I I 

0.9 
K=IO. KL=“. r)=l.25 

0.8 

0.6L h II -I 

0.7 
K=IO, KL=cO, r)=O.l25 

0.6 
0 0 

0.5 0.5 

K=IO. 0.4 
0.4 

KL=l.q=l.25 

0.3 0.3 

0.2 0.2 

0. I 0. I 

0 0 
0 0 0. 0. I I 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.6 0.6 0.7 0.6 0.7 0.6 0.9 0.9 I I .o .o 

I- = z/L 

FIG. 3. Fractional coverage of pore wall vs axial position for a quickly adsorbing impregnant (K = 10) at 
7 = 1. (-) Kinetic control; (- -) mass transfer control. 
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1.4 - K=iO, KL=m, ,,=I.25 

e 

K=IO, KL=I, ~‘I.25 

l-=z/L 

FIG. 4. Fractional coverage of pore wall vs axial position compared between 7 = landr= m.(-) 
7 = m; (--)T = 1. 

file at breakthrough. K, has little effect if 
K is small. 

3. For values of K large enough to sat- 
urate part of the pore, 7 controls the length 
of the saturated portion. 

Finally, it is apparent from Fig. 4 that 
the three conclusions above are not affected 
qualitatively by the ultimate adsorption 
of whatever impregnant remains in solu- 
tion when the pore fills with liquid. The 
difference in 0 vs I? between 7 = 1 and 
7 = 00 is approximately one of expanding 
the scale of 0 by a constant factor. 

The assumption behind the T = 00 case 
shown in Fig. 4 is that the time for re- 
moval of the excess impregnant at T = 1 
is much less than the time for axial diffu- 
sion down the pore. The case of axially 
mobile impregnant through a stagnant 
fluid filling the pore is treated thoroughly 
by Weisz (4). 

Figure 5 shows the solution to Eq. (20) 
(the case for nonsaturation of the pore 
wall) for several values of K. Small values 
of K result in uniform adsorption, but the 
concentration level cannot easily be 
controlled. 

Relation of the Model to Real System 

If a real porous body is envisioned as a 
tortuous collection of interconnected pores 
all of which have a very large length to 
diameter ratio, the results of the single pore 
model described here should be extendable 

to a real catalyst support pellet. At least, 
the three parameter model should offer the 
same qualitative information regarding dis- 
persal of impregnant as a function of par- 
ticle radius as it does for axial position in 
the single pore. Quantitative information 
about the real system probably cannot be 
obtained from the single pore model (even 
if values of the parameters were known) 
because (1) a real network of pores would 
have a wide range of pore diameters and 
lengths, (2) fluid mixing in such a pore net- 
work is nonlinear, and (3) the geometry of 
a two- (cylindrical pellet) or three- (spheri- 
cal) dimensional problem as opposed to a 
one-dimensional problem requires a differ- 
ent velocity up(t) than was used in this 
work. 

As an example of a three-dimensional 
solid which preserves the analytical sim- 
plicity of the single pore model consider 
a cylindrical pellet with a system of uni- 
formly bifurcating pores extending from 
the center to the surface. The velocity as a 
function of time and the distance in from 
the surface can be shown to be: 

o(z, t) = Ag fl)G-m/s exp 
P 

{- g(g)‘t}7 

(21) 

where S is the length of the branches in the 
pore system and (Y is a constant approxi- 
mately equal to 1.5 In 2. In this geometry 
the velocity at any position in the pellet 
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0. I 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1.0 
l-=2/L 

FIG. 5. Fractional coveraae of Dare wall vs axial Dosition for nonsaturating, irreversible adsorption, case 
2a; Eq. (20). 

- _ 

decreases exponentially with time rather 
than with the reciprocal of the square-root 
of time [Eq. (8) ] as it does for the one- 
dimensional solid. Both results, however, 
are monotonically decreasing functions of 
time and though one might expect some 
quantitative differences, the qualitative 
features of the problem which this paper 
has tried to describe within the framework 
of the one-dimensional geometry should 
apply as well to three-dimensional systems. 
Further investigations of the single pore 
model for cylindrical and spherical geome- 
tries are planned in order to establish this 
point more definitely. 

Empirical evidence of the qualitative 
validity of the model to real systems in- 
cludes the work of Maatman (3) in which 
acid added to the impregnation solution 
evidently reduced 77 by occupying adsorp- 
tion sites. Similar work done in this labora- 
tory, and electron microprobe measure- 
ments of impregnant profiles in porous 
pellets by Andersen and Chen (8)) also 
support the results presented here. 

K. The middle photograph shows a pellet 
treated similarly with an aqueous solution 
0.5 M in NiCl, and 0.5 M in HNO,. The 
light exterior band contains a low level of 
nickel (not evident in the photograph). 
This suggests that the acid sharply reduced 
the capacity of the support to adsorb nickel 
(reduced 7) in this region, allowing the 
nickel to penetrate deeper into the pellet. 
When the acid was depleted (at the inner 
edge of the light band), the nickel ad- 
sorbed strongly in a subsurface band. The 
final photograph shows a pellet treated with 
0.5 M NiCl, in concentrated HNO,. Uni- 
form impregnation was achieved since 
there was sufficient acid to reduce r] 
throughout the pellet. Although not shown 
here, uniform impregnation also was ob- 
tained by soaking pellets in acid, drying, 
and then impregnating with 5M NiCl, in 
water. 

The upper photograph in Fig. 6 shows 
an alumina pellet which was soaked for 
50 min in 0.5 M aqueous NiCl, (long 
enough for maximum water uptake), dried 
in air at 110°C and subsequently cut in 
half. The distinct dark band of nickel ex- 
tending inward from the surface suggests 
that this is a system with a high value of 

The results of Andersen and Chen (8) 
for impregnation of alumina pellets with 
chromic acid and chromium nitrate are 
shown schematically in Fig. 7. The chromic 
acid system (upper figure) is evidently one 
with a low value of K and/or K, (weakly 
adsorbing). The profile is gently sloping, 
and as 17 is decreased by increasing co, the 
level of impregnation increases, much as 
Fig. 2 predicts for low K systems. The pro- 
files for the chromium nitrate show the 
sigmoidal character of a high K system. 
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FIG . 6. Nickel impregnated alumina pellets. Upper: in 0.5 M NiC12 (as); middle: in solution 0.5 1 
NiCh and 0.5 A4 in HCl; lower: in 0.5 111’ NiC12 in concentrated HCI. 

I4 in 
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Chromic Acid 

Chromium Nitrate 

\ \\ 
Center 

Radial PosItion in Pellet 

FIG. 7. Schematic reproduction of results of 
Andersen and Chen (8) with permission of the 
authors. Concentration of chromium vs radial posi- 
tion in alumina spheres. 

The breakthrough advances as v is re- 
duced, as in Fig. 3. The narrow region of 
very high metal content at the pellet sur- 
face is not predicted by the pore model. 
It may be due to a secondary process of 
crystallization or to precipitation during 
drying of the pellets. 

The analytical solution of the irreversi- 
ble adsorption kinetics (model 2a) repre- 
sents an interesting limiting case when 
either the adsorptivity of the impregnant 
on the pore wall is very large or when the 
liquid concentration is very low. It would 
also be applicable to deposition by crystal 
growth and/or precipitation. In such cases 
and in ion-exchange impregnation the rate 
of attachment could be much smaller than 
the liquid phase mass transfer. 

SUMMARY AND CONCLUSIONS 

A single pore model has been developed 
to analyze the time-dependent problem of 
liquid phase impregnation of a catalyst 
pellet. The model employs the plug flow 
approximation, shown to be physically rea- 

sonable, with a liquid velocity proportional 
to t@. Two types of resistance at the 
solution-wall boundary, mass transfer and 
adsorption kinetics are shown to yield simi- 
lar values of impregnation profiles in sys- 
tems in which saturation occurs. The sub- 
case of irreversible, kinetically controlled 
adsorption without saturation has been 
solved analytically. The results of the 
model qualitatively explain observations 
made on real three-dimensional systems. 

Of the three independent parameters in 
the model, 7 is apparently the most useful 
in the management of impregnant disper- 
sal. It is the most easily adjusted param- 
eter and its effect has been demonstrated 
empirically. If the parameter K is large 
enough to yield the sigmoid impregnation 
profiles, adjustment of 7 should be a sim- 
ple practical means of obtaining uniform 
impregnation to whatever depth desired. 

APPENDIX 

Solution to Eq. (11), Diffusion 
in Plug Flow 
In order to avoid the problems of a 

simultaneous solution of a three-dimen- 
sional system with a discontinuous bound- 
ary condition, a direct numerical solution 
of Eq. (11) was not attempted. Rather, 
the following scheme was used. 

The column of solution passing down the 
pore was divided mathematically into M 
cylindrical units or “slugs” which pass se- 
quentially into and down the pore. Since 
the flow is plug and there is no desorption 
or axial diffusion, there is no mixing be- 
tween slugs and a mass balance can be 
solved for each slug independently. The 
only restriction is that each slug be very 
short relative to the length in the ‘9eal” 
system over which appreciable axial con- 
centration gradients would exist. The prob- 
lem is solved bv calculating how each slug 
disperses impregnant along the pore by dif- 
fusing it across the radial boundarv and 
summing the contribution from all M slugs 
at each point along the pore. The discon- 
tinuous boundary condition at T = R as 13 
changes from unitv to less than unity is 
easily accommodated by this scheme. 
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The mass balance for each slug becomes 

& 

2 

=.&T rd-” 

( > r & ar 
> 

ac 
c(r, 0) = co, c(R, 0 = 0, z hO = 0, 

which is simply the well-known one-dimen- 
sional unsteady transport equation for a 
cylinder. Its solution for these boundary 
conditions is Lo c(r, t’) = 2co c Jo w(--a)%2t’) a3nJl(an)’ 

n=l 

where J is the Bessel1 function, Jo(&) = 
0, and t’ measures time from when the slug 
first reaches a point in the pore for which 
8 < 1. 

The result of this scheme is that the ad- 
sorption at point z from the Nth slug is 
given by 

c 

t’=t’r 
I&‘) = 4coR2 k2 exp( - 6LW’) 7 

l’=V, 

where 

and zS is the smallest value of z for which 
e < 1. 

A running summation xNZN (z) is kept and 
compared with whatever saturation level 
is desired in order to adjust zs as necessary. 
The final summation &=lMZN(~) gives the 
impregnation profile. 

1. 

2. 

3. 4. 
6. 
6. 
7. 

8. 
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